Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 72(1): 73-89, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34836918

RESUMO

OBJECTIVE: Idiopathic Parkinson's disease (PD) is characterised by alpha-synuclein (aSyn) aggregation and death of dopaminergic neurons in the midbrain. Recent evidence posits that PD may initiate in the gut by microbes or their toxins that promote chronic gut inflammation that will ultimately impact the brain. In this work, we sought to demonstrate that the effects of the microbial toxin ß-N-methylamino-L-alanine (BMAA) in the gut may trigger some PD cases, which is especially worrying as this toxin is present in certain foods but not routinely monitored by public health authorities. DESIGN: To test the hypothesis, we treated wild-type mice, primary neuronal cultures, cell lines and isolated mitochondria with BMAA, and analysed its impact on gut microbiota composition, barrier permeability, inflammation and aSyn aggregation as well as in brain inflammation, dopaminergic neuronal loss and motor behaviour. To further examine the key role of mitochondria, we also determined the specific effects of BMAA on mitochondrial function and on inflammasome activation. RESULTS: BMAA induced extensive depletion of segmented filamentous bacteria (SFB) that regulate gut immunity, thus triggering gut dysbiosis, immune cell migration, increased intestinal inflammation, loss of barrier integrity and caudo-rostral progression of aSyn. Additionally, BMAA induced in vitro and in vivo mitochondrial dysfunction with cardiolipin exposure and consequent activation of neuronal innate immunity. These events primed neuroinflammation, dopaminergic neuronal loss and motor deficits. CONCLUSION: Taken together, our results demonstrate that chronic exposure to dietary BMAA can trigger a chain of events that recapitulate the evolution of the PD pathology from the gut to the brain, which is consistent with 'gut-first' PD.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Doença de Parkinson/metabolismo , Inflamação/metabolismo , Mitocôndrias/metabolismo
2.
Biomedicines ; 10(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35884815

RESUMO

Alzheimer's disease (AD) is the most serious and prevalent neurodegenerative disorder still without cure. Since its aetiology is diverse, recent research on anti-AD drugs has been focused on multi-target compounds. In this work, seven novel hybrids (RIV-BIM) conjugating the active moiety of the drug rivastigmine (RIV) with 2 isomeric hydroxyphenylbenzimidazole (BIM) units were developed and studied. While RIV assures the inhibition of cholinesterases, BIM provides further appropriate properties, such as inhibition of amyloid ß-peptide (Aß) aggregation, antioxidation and metal chelation. The evaluated biological properties of these hybrids included antioxidant activity; inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and Aß42 aggregation; as well as promotion of cell viability and neuroprotection. All the compounds are better inhibitors of AChE than rivastigmine (IC50 = 32.1 µM), but compounds of series 5 are better inhibitors of BChE (IC50 = 0.9-1.7 µM) than those of series 4. Series 5 also showed good capacity to inhibit self- (42.1-58.7%) and Cu(II)-induced (40.3-60.8%) Aß aggregation and also to narrow (22.4-42.6%) amyloid fibrils, the relevant compounds being 5b and 5d. Some of these compounds can also prevent the toxicity induced in SH-SY5Y cells by Aß42 and oxidative stress. Therefore, RIV-BIM hybrids seem to be potential drug candidates for AD with multi-target abilities.

3.
Molecules ; 25(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098407

RESUMO

A series of multi-target-directed ligands (MTDLs), obtained by attachment of a hydroxyphenylbenzimidazole (BIM) unit to donepezil (DNP) active mimetic moiety (benzyl-piperidine/-piperazine) was designed, synthesized, and evaluated as potential anti-Alzheimer's disease (AD) drugs in terms of biological activity (inhibition of acetylcholinesterase (AChE) and ß-amyloid (Aß) aggregation), metal chelation, and neuroprotection capacity. Among the DNP-BIM hybrids studied herein, the structural isomerization did not significantly improve the biological properties, while some substitutions, namely fluorine atom in each moiety or the methoxy group in the benzyl ring, evidenced higher cholinergic AChE activity. All the compounds are able to chelate Cu and Zn metal ions through their bidentate BIM moieties, but compound 5, containing a three-dentate chelating unit, is the strongest Cu(II) chelator. Concerning the viability on neuroblastoma cells, compounds 9 and 10 displayed the highest reduction of Aß-induced cell toxicity. In silico calculations of some pharmacokinetic descriptors indicate that all the compounds but the nitro derivatives have good potential oral-bioavailability. Overall, it can be concluded that most of the studied DNP-BIM conjugates showed quite good anti-AD properties, therefore deserving to be considered in further studies with the aim of understanding and treating AD.


Assuntos
Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Relação Estrutura-Atividade , Acetilcolinesterase/genética , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Quelantes/síntese química , Quelantes/química , Quelantes/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Donepezila/análogos & derivados , Donepezila/química , Donepezila/farmacologia , Humanos , Indazóis/química , Indazóis/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Piperazina/síntese química , Piperazina/química , Piperazina/farmacologia , Piperidinas/síntese química , Piperidinas/química , Piperidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA